DISTRIBUTION OF IRREDUCIBLE POLYNOMIALS OF SMALL DEGREES OVER FINITE FIELDS

KIE H. HAM AND GARY L. MULLEN

ABSTRACT. D. Wan very recently proved an asymptotic version of a conjecture of Hansen and Mullen concerning the distribution of irreducible polynomials over finite fields. In this note we prove that the conjecture is true in general by using machine calculation to verify the open cases remaining after Wan's work.

For a prime power q let F_q denote the finite field of order q. Hansen and Mullen in [4, p. 641] raise

Conjecture B. Let $a \in F_q$ and let $n \ge 2$ be a positive integer. Fix an integer j with $0 \leq j < n$. Then there exists an irreducible polynomial $f(x) = x^n + \sum_{k=0}^{n-1} a_k x^k$ over F_q with $a_i = a$ except when

(B1) q arbitrary and j = a = 0;

(B2) $q = 2^m, n = 2, j = 1, and a = 0.$

Clearly (B1) must be an exception, for otherwise f(x) is divisible by x. As for (B2), in characteristic two every element of F_q is a square, and so $x^2 + a_0 = (x+b)^2$ is reducible.

Using character sum estimates, in [6, Cor. 5.8] Wan provides an asymptotic version of Conjecture B by proving:

Theorem 1. If either q > 19 or $n \ge 36$, then Conjecture B is true.

As Wan indicates in [6, p. 1197], "Actually the number of possible exceptions is much smaller. It should be quite realistic to completely settle Conjecture B by detailed arguments with perhaps some computer calculations." The purpose of this note is to point out that Conjecture B is indeed true in general.

We begin by first noting that Corollary 5.6 (and Corollary 5.3 for q = 2) of Wan [6] actually provide a smaller list of possible exceptions. We state these refinements as

Theorem 2. Conjecture B is true for $a \neq 0 \in F_q$ if (i) $q^{n-j-2} \ge (j+1)^4$ or $q^{j-1} \ge (n-j+1)^4$; (if $q = 2, 2^{n-j} \ge (j+1)^4$ or $2^{j-1} \ge (n-j+1)^4$); (ii) For a = 0, if $q^{n-j-1} \ge (j+1)^4$ or $q^{j-1} \ge (n-j+1)^4$.

By machine calculation each of the exceptions from Theorem 2 was checked and indeed an irreducible with the specified conditions to satisfy Conjecture B was found. However rather than listing all of these polynomials, we have provided in

1991 Mathematics Subject Classification. Primary 11T06.

Received by the editor May 20, 1996 and, in revised form, October 7, 1996.

Table A a collection of irreducibles, which along with use of the elementary fact that if a polynomial f(x) is irreducible over F_q , then so is the reciprocal polynomial $f^*(x) = x^n f(1/x)$, shows that in all of the exceptional cases, there is indeed an irreducible with the specified property.

The following conventions have been used in listing the various polynomials. The coefficients of a polynomial are listed from highest degree on the left, to lowest degree on the right. In addition, capital letters A, B, \ldots, I are used to denote the numbers $10, 11, \ldots, 18$. Thus for q = 19 and n = 3, the polynomial $x^3 + 3x^2 + 11x + 1$ is represented by 13B1.

For each non-prime value of q, in addition to the values of $q = p^m$ and the degree n, we have also listed a primitive polynomial f(x) of degree m over F_p . Hence any root α of f(x) multiplicatively generates the non-zero elements of F_q . Define * by $\alpha^* = 0$. Then for $j = *, 0, 1, \ldots, q - 2$, we list the element $\alpha^j \in F_q$ by j. Thus for the case $q = 2^2$, n = 3, and $f(x) = x^2 + x + 1$, the irreducible polynomial $x^3 + 0x^2 + \alpha x + 1$ of degree 3 over F_4 is listed as 0 * 10.

TABLE A

$q=2\;(n)$								
(4)	(6)	(9)	(12)	(15)				
11001	1000011	1101100001	1000000001001	1000000011100111				
11111	1101101	(10)	1000001111011	(16)				
(5)	(7)	10010000001	(13)	1000010000000111				
101001	11110001	10100111101	10010001111111	1000000111000111				
	(8)	(11)	(14)	(17)				
	101100011	100011000011	10001000001011	10000000111000001				
	100011101		100000011101011					
(18) 1000000000000000	01001 100000	(19) 00001100100001	(20) 1000000100000001	$ \begin{array}{c} (21) \\ (21) \\ (200000000000000000000000000000000000$	001			
	0101	(0.0)	1000000001110000	10001				
(22)		(23)		(24)				
100000000010000	00000111	1000000000000100	0000111011 10000	00000000000000011011				
1000000000110000011101 1000000000000000								

$$q = 3(n)$$

(3)	(5)	(7)	(9)	(11)	(13)
1211	110111	10001111	1000011011	100000110011	10000001100121
(4)	101221	10002211	1000022021	100000221121	10000002200101
10012	(6)	(8)	(10)	(12)	(14)
12112	1000012	100000102	10002001021	100000010011	100000000000111
11222	1001122	100011022	10000111111	1000001101111	100000011000121
	1102202	100022012	10000222021	1000002201101	100000022000201
(15)		(16)		(17)	
1000000011000	001	1000000002000	00121 1000	000002100000211	
100000022002021		10000001100	00001		
		100000022000	00021		
(18)		(19)			
10000000000000	000211	100000000210	00002101		
100000001000	001221				
100000002000	000001				

$$q = 5 (n)$$

(3)	(4)	14331	111231	1001101	(7)	(8)	100033041
1011	11041	11441	103441	1012221	10040001	100000241	100044031
1021	10111	(5)	(6)	1003301	10012121	100011131	
1341	10221	100041	1000111	1004441	10034001	100022021	

$(9) \\ 10001200 \\ 10003403 \\ (10)$	$ \begin{array}{cccc} 100 \\ 11 & 100 \\ 11 & 100 \\ 100$	00000022 00010030 00020013 00030012 00040012	1 10000 1 10000 1 10000 1	(11) 01201111 03400231					
				q	=7~(n)	I			
$(3) \\1151 \\1261 \\1341$	$(4) \\10011 \\10111 \\13221$	$11331 \\ 13441 \\ 11551 \\ 14661$	(5) 100031 101231 103431 105601	(6) 1 10000 1 10011 1 10022	$ \begin{array}{r} 1003\\ 21 & 1004\\ 11 & 1005\\ 21 & 1006 \end{array} $	3341 1461 10 5531 10 5611 10	(7) 0012011 0034011 0056001	(8) 100000021 100010061 100020041	$\begin{array}{c} 100030041\\ 100040151\\ 100050011\\ 100060011 \end{array}$
(9) 10001201 10003402 10005600	51 51 21					Ň			
				q :	= 11 (n))			
$(3) \\ 1171 \\ 12A3$	$1392 \\ 1463 \\ 1581$	$(4) \\ 10041 \\ 15111 \\ 11221$	$10331 \\ 10441 \\ 13551 \\ 11661$	13771 13881 10991 11 <i>AA</i> 1	(5) 101211 103461	105621 107861 109A71	$\begin{array}{ccc} 1 & (6) \\ 1 & 10001 \\ 1 & 10010 \\ 10020 \end{array}$	$\begin{array}{rrr} 1003041\\ 11 & 1004111\\ 41 & 1005001\\ 11 & 1006011 \end{array}$	$1007011 \\ 1008051 \\ 1009081 \\ 100A031$
(7) 10012051 10034041	1005600 1007800 1009A00)1 31 21							
				q :	= 13 (n))			
$(3) \\1181 \\1321 \\1541$	1761 19 <i>C</i> 1 1 <i>BA</i> 1	(4) 160 <i>A</i> 1 11111 10221 10331	$14441 \\ 14551 \\ 15661 \\ 10771 \\ 13881$	$11991 \\ 10A21 \\ 18BB1 \\ 15CC1$	(5) 101201 103451 105641	10783 109 <i>A</i> 0 10 <i>BC</i> 3	1 (6) 01 10000 51 10010 10020 10032) 100405 021 100503 041 100608 011 100701 231 100804	$\begin{array}{ccc} 1 & 1009061 \\ 1 & 100A061 \\ 1 & 100B031 \\ 1 & 100C011 \\ 1 \end{array}$
(7) 10012021 10034001 10056121	100780 1009 <i>A</i> (100 <i>BC</i>	001 041 051							
				q =	= 17 (n))			
(3) 1131 1261	$14A1 \\ 1591 \\ 17C1$	$18B1 \\ 13G1 \\ 1EF1$	(4) 10031 10131	10221 1 10331 1 10431 1	.0521 1 .0621 1 .0721 10	$\begin{array}{ccc} 0861 & 1\\ 0921 & 1\\ 0A11 & 1 \end{array}$	10 <i>B</i> 11 1 10 <i>C</i> 11 1 10 <i>D</i> 41 1	$\begin{array}{ccc} 0E51 & (5) \\ 0F21 & 1012 \\ 0G31 & 1034 \end{array}$	$105601 \\ 51 107851 \\ 11 109A21$
$10BC31 \\ 10DE61 \\ 10FG01$					10 (N			
				q :	= 19 (11)			
$egin{array}{ccc} (3) & 14 \ 11H1 & 15 \ 12D1 & 16 \ 13B1 & 17 \end{array}$	$C1 = 18 \\ 5I1 = 19 \\ 5A1 \\ 7F1$	GG1 = (4) GE1 = 100 102 102	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccc} 311 & 107 \\ 411 & 108 \\ 551 & 109 \\ 511 & 10A \end{array}$	$\begin{array}{rrrr} 21 & 10B \\ 61 & 10C \\ 31 & 10D \\ 11 & 12E \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F81 (4 G21 101 H11 103 I61 105	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1 10 <i>FG</i> 11 1 10 <i>HI</i> 01 01 21
				q = 4 (n)	a) $x^2 +$	-x + 1			
(3) 0 * 00 0 * 10 0 * 20	$(4) \\ 00 * 10 \\ 0 * 010 \\ 00100 \\ 01220$	$(5) \\ 0 * *0 \\ 0 * 122 \\ (6) \\ 0 * 0 * = 100$	0 * 0 0 * 20 0 *01 0 *	* 00021 * 011 * 1 * 12211 (7) * * 0000	0 * 11 (8 0 * * * * 0 * * * 1	2210) *2 * 10 00010 L1 * 00	0 * * * 2 (9) 0 * * * * 0 0 * * * 12	2 * 00) 0 * 1 * * * 0 0 * 2 * *20 0 * 0 *	(10) * * * 2 * *10 * * *00 * 100 * * *11 * 010 * * *22 * 210

(12)(11)0 * * * * * * 2 * * 0 * 0(13)0 * * * * * 0 * *110 0 * * * * * 00 * * * 10 0 * * * * * * 0 * * * 100 0 * * * *12 * 1 * 10 $0 * * * * * 11 * * 20 \quad 0 * * * * 12 * * * 20$ 0 * * * * * 22 * * 10 $q = 8 (n) \quad x^3 + x + 1$ (4)(3)(5)(6)(7)(8)04330 0 * *0 * 0 0 * * * * * 30 0 * *33500 * *01 * 00 0 * * * *0030 0 * *00 0010 0 * 300200230 00000 01440 0 * 12 * 00 * *44100 * *230200 * * * 00 * 0002550 0 * 34400 * *11200 * *55600 * *45 * 100 * * * 100 * 00450 01110 0 * *22400 * *66300 * * * 6 * * 00 * * * 200 * 00260 02220 01660 0 * 5640(9)0 * * * 30 * 400 * * * 01 * *40 0 * * * 400 * 00 * * * 23 * * * 0 0 * * * 50 * 200 * * * 45 * * 200 * * * 60 * 100 * * * *6 * * * 0 $q = 9(n) \quad x^2 + 2x + 2$ (3)0270 (4)0 * 11002440 00770 0 * 23 * 0(6)0 * *1 * 500 * *42100030 00 * 00 0 * 22000550 0 * 45000 * * * 230 0 * *22000 * *5 * 100460 (5)0 * *02300 * *62200150 0 * 012001000 0 * 3300 * 6600 * 67200 * * 3 * 700 * *7 * 300 * *23 * *0(7)0 * *450500 * *01130 0 * *67120 $q = 16 (n) \quad x^4 + x + 1$ 0 * 1000 * 4000 * 750(3)0260 09A0(4)0*A100 * D500*01000080 0350 0BC000 * 300 * 2000 * 5100 * 8000 * B300 * E300 * 23000170 0040 0DE00 * 0300 * 3000 * 6000 * 9000 * C00(5)0 * 45 * 00 * 67 * 0 $0 * CD00 \quad 0 * *C * 0$ 0 * *E300 * 89600 * *D040 * AB * 00 * *B070 * * E02

Theorem 3. Conjecture B is true.

It seems quite natural to ask to what extent one can more generally specify several coefficients in advance; perhaps some function of n say like log n?

Since every primitive polynomial over F_q is irreducible over F_q , we also briefly discuss the following conjecture concerning the distribution of primitive polynomials. Along with use of tables of irreducibles such as Table C of Lidl and Niederreiter [5], the motivation for Conjecture B initially arose from the main result of Cohen [1]. Cohen proved in [1] that if $n \ge 2$ and $a \in F_q$ with $a \ne 0$ if n = 2 or if n = 3and q = 4, then there exists a primitive polynomial of degree n over F_q with trace a. As a generalization of Cohen's result, we also state the following conjecture from [4] concerning the distribution of primitive polynomials:

Conjecture A. Let a, n, j be as in Conjecture B. Then there exists a primitive polynomial $f(x) = x^n + \sum_{k=0}^{n-1} a_k x^k$ of degree n over F_q with $a_j = a$ except when (A1) q arbitrary, j = 0, and $a \neq (-1)^n \alpha$, where $\alpha \in F_q$ is a primitive element;

(A2) q arbitrary,
$$n = 2, j = 1, and a = 0$$
;

(A3) q = 4, n = 3, j = 2, and a = 0;

- (A4) q = 4, n = 3, j = 1, and a = 0;
- (A5) q = 2, n = 4, j = 2, and a = 1.

Conjecture A states that with five exceptions, there exists a primitive polynomial of degree n over F_q with the coefficient of any fixed power of x prescribed in advance. The five exceptions are indeed necessary because in those cases, there are no polynomials with the desired property. Once again one can ask to what extent

340

one can specify more than one coefficient in advance. For example Cohen asks in [2] whether there is some function c(n) (such as log n, \sqrt{n} , or n/4) so that there is a primitive with $\lfloor c(n) \rfloor$ coefficients specified in advance, where $\lfloor \rfloor$ denotes the greatest integer function. For a recent partial result in this direction, we refer to Han [3] who shows that for $n \geq 7$, there is a primitive polynomial of degree n over F_q with the coefficients of both x^{n-1} and x^{n-2} specified in advance.

ACKNOWLEDGMENT

We would like to thank Daqing Wan for providing us with a number of very helpful ideas.

References

- S. D. Cohen, Primitive elements and polynomials with arbitrary trace, Discrete Math. 83 (1990), 1-7. MR 91h:11143
- S. D. Cohen, Primitive elements and polynomials: existence results, In: <u>Finite Fields, Coding</u> <u>Theory, and Advances in Communications and Computing</u>, (G. L. Mullen and P. J.-S. Shiue, <u>Eds.</u>), Lect. Notes in Pure & Appl. Math., Vol. 141(1993), Marcel Dekker, New York, pp. 43-55. MR 93k:11113
- W. B. Han, The coefficients of primitive polynomials over finite fields, Math. Comp. 65 (1996), 331-340. MR 96d:11128
- T. Hansen and G. L. Mullen, Primitive polynomials over finite fields, Math. Comp. 59 (1992), 639-643; Supplement S47-S50. MR 93a:11101
- R. Lidl and H. Niederreiter, <u>Finite Fields</u>, Encyclo. Math. Appl., Vol. 20, Addison-Wesley, Reading, MA, 1983 (Now distributed by Camb. Univ. Press). MR 86c:11106
- D. Wan, Generators and irreducible polynomials over finite fields, Math. Comp. 66 (1997), 1195–1212. CMP 96:16

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802

E-mail address: csh102@psu.edu

DEPARTMENT OF MATHEMATICS, THE PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802

E-mail address: mullen@math.psu.edu